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Tech users currently have limited ability to act on concerns regarding the negative societal impacts of large 
tech companies. However, recent work suggests that users can exert leverage using their role in the 
generation of valuable data, for instance by withholding their data contributions to intelligent technologies. 
We propose and evaluate a new means to exert this type of leverage against tech companies: “conscious data 
contribution” (CDC). Users who participate in CDC exert leverage against a target tech company by 
contributing data to technologies operated by a competitor of that company. Using simulations, we find that 
CDC could be highly effective at reducing the gap in intelligent technologies performance between an 
incumbent and their competitors. In some cases, just 20% of users contributing data they have produced to a 
small competitor could help that competitor get 80% of the way towards the original company’s best-case 
performance. We discuss the implications of CDC for policymakers, tech designers, and researchers.  
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1 INTRODUCTION 

There is growing concern about the serious negative societal impacts of intelligent technologies 
operated by large technology companies. However, existing power dynamics between the public 
and tech companies limit the public’s ability to change tech company behavior with regards to 
privacy erosion, harms to democracy, economic inequality and other issues [19,23]. For instance, 
attempts to exert leverage against tech companies through consumer protest, e.g. boycotts, must 
contend with the market power of large tech companies [20,45,48].  
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In this paper, we explore how the public might exert data leverage against tech companies. 
Users (i.e. the public) play a critical role in the economic success of tech companies by providing 
training data—i.e. “data labor” [1,45]—that is existentially important to data-driven technologies 
(e.g. [55–57]). This means that users can take advantage of their role as data generators to gain 
leverage against data-dependent firms [57]. 

 Recent research indicates that fertile ground exists for data leverage: in one survey published 
at CSCW, 30% of U.S.-based respondents reported they have already stopped or changed their 
technology use as a form of protest against tech companies, while in another survey 33% of U.S.-
based respondents reported they believe tech companies have a negative effect on the country 
[11,36].  

Prior work identified one form of data leverage: data strikes [55]. In a data strike, a group of 
users who wishes to protest the values or actions of a tech company withholds and/or deletes their 
data contributions to reduce the performance of the company’s data-driven technologies. While 
this research found through simulations that data strikes might be effective, data strikes must 
contend with the diminishing returns of data to machine learning (ML) performance [22]. Indeed, 
the ability to generalize from limited data is one reason machine learning is so powerful. This 
means that a small data strike will likely have a very small effect on other users. Additionally, a 
user who participates in a data strike hinders their own ability to benefit from personalization-
based ML systems, which may make participation hard to sustain in some cases.  

In this paper, we propose and evaluate an alternative means for users to exert data leverage 
against tech companies: conscious data contribution (or “CDC”). A group of users who wishes 
to protest a tech company using CDC contributes its data to a competing institution (e.g. another 
tech company) that has values or actions with which they agree more. They can additionally 
delete their data from the offending company’s dataset, effectively combining a data strike and 
CDC. CDC takes advantage of the fact that data is “nonrival”—many firms can use the same data 
[25], so deleting data or quitting an existing technology is not a requirement for CDC. A group of 
people could help to support a new competitor in the market using CDC, without the need to 
completely quit using existing technologies.  

In theory, CDC has two desirable characteristics compared to data strikes. First, CDC is more 
realistic within short-term time frames (as some data strikes will require support from regulators), 
which is important given the growing demand for immediate changes to the power dynamics 
between users and tech companies. In terms of legal support for CDC, regulators in various 
jurisdictions, e.g. the European Union, are increasingly advancing legislation that protects “data 
portability”, the right for users to receive and re-use their personal data [34]. Tech companies are 
also supporting data portability features, e.g. Google’s “Takeout” feature that allows users to 
export their data [21]. As data portability laws and features become more common, CDC should 
become even easier to practice. 

Second, while small data strikes must fight an uphill battle against the diminishing returns of 
data, CDC does not face diminishing returns until participation is high. While small data strikes 
may have a minor impact on a large company’s technologies, small contributions of data could 
hugely improve the performance of a CDC beneficiary’s data-driven technologies, helping it to 
compete with the target of a protest. In other words, CDC can more easily operate in the “vertical” 
region of the performance vs. dataset size curve instead of the “horizontal” region of this curve. 

The goal of this paper is to begin to understand how CDC might work in practice. To do so, we 
simulated CDC applied to four widely studied and business-relevant ML tasks: two 
recommendation tasks and two classification tasks. For context, we also consider data strikes—
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combined with CDC and on their own—in which users delete their data from an offending 
company. In total, we simulated three different data leverage scenarios: CDC only, data strike only, 
and CDC with data strike. To measure the data leverage achieved in each scenario with different 
participation rates, we compared the ML performance of a simulated large, data-rich incumbent 
company (the target of CDC) with that of a small competitor (the beneficiary of CDC). To enable 
comparisons across ML tasks with different evaluation metrics, dataset sizes, and data formats, we 
defined Data Leverage Power (DLP), a metric that facilitates cross-task comparison and the 
comparison of CDC to data strikes. In our analyses, we compare performance using both DLP and 
traditional ML metrics, which provide a task-specific perspective. 

Our findings suggest that CDC with relatively small participation rates can effectively reduce 
the gap between a data-rich incumbent and its small competitor. If just 20% of users participate in 
CDC, the small competitor can get at least 80% of the way towards best-case performance for all 
our ML tasks. In certain situations, participation by 5% of users is enough to boost the small 
competitor’s ML performance to 50% of best-case performance improvement, and 20% of users can 
get the small competitor 90% of the way.  

Our results suggest that CDC may be more powerful than data strikes for many real-world 
contexts and could provide new opportunities for changing existing power dynamics between 
tech companies and their users. While we must be cautious in comparing the effects of CDC and 
data strikes because they operate differently (i.e. helping a competitor vs. directly hurting a 
company), we see that CDC is effective even when data strikes are impossible. More generally, our 
simulation experiments highlight how methods from machine learning research can be used to 
study and change power dynamics between tech companies and the public. 
2 RELATED WORK 

2.1 Data Leverage and Consumer Leverage 

Our interest in the CDC concept was heavily motivated by literature that has studied the use of 
data leverage to give the public more power in its relations with tech companies (and broadly, any 
organizations that use data-dependent technologies) [57]. Very recent work has proposed a 
framework of “data leverage” that consists of three “data levers”: data strikes, conscious data 
contribution, and data poisoning. Data strikes involve data deletion/withholding, conscious data 
contribution involves data generation/sharing , and data poisoning involves data manipulation 
aimed at harming data-driven technologies [57]. In this paper, we focus on comparing data strikes 
and conscious data contribution with simulation experiments. In other words, we focus 
specifically on two branches of the broader data leverage framework. 

 Previously, Vincent et al. studied simulated “data strikes” in the recommender system context 
and found that data strikes of moderate size (e.g., 30-50% of users) could be impactful. Weyl and 
Lanier [33] have proposed that cooperative entities might guide collective action like data strikes. 
While the data strikes concept has focused on withholding or deletion of data, Brunton and 
Nissembaum [4] have written about obfuscation-based protest – feeding intelligent technologies 
junk data to reduce their predictive power, using tools like AdNauseum [24]. Finally, Kulynych, 
Overdorf, and colleagues [32] laid out a broad framework for “Protective Optimization 
Technologies” (POTs) – technologies that attack optimization systems like intelligent technologies 
in order to reduce externalities caused by such systems. This framework is inclusive of any tactics 
that contest a technology, including the data levers we explore in this paper (data strikes and 
CDC) or “data poisoning”—the third “data lever” in Vincent et al.’s data leverage framework [57]—
which draws on obfuscation, POTs, and machine learning literature on adversarial data. 
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2.2 The Relationship between Data Leverage and Consumer Leverage 

While interest in data leverage is relatively new, a large body of work has studied forms of 
consumer leverage. The definition of CDC we use here was influenced by existing types of 
consumer leverage. In particular, the practice of “political consumerism”, in which the public uses 
its consumer purchasing power as a political tool, is a precedent for CDC [40]. Political 
consumerism includes both boycotts and “buycotts”: buying products or services to support a 
specific company. Buycotts, in contrast to boycotts, represent a “positive approach” to consumer 
action, as they reward, rather than punishing, a company [15]. Drawing on the dichotomies of 
data vs. consumer leverage and positive reward-based approaches vs. negative punishment-based 
approaches, CDC can be seen as a data leverage version of the positive, reward-focused buycotting 
approach. 

Both political consumerism and interest in protest against tech are prevalent, suggesting there 
may be a large market for CDC. Recent work suggests over 50% of U.S.-based survey respondents 
having engaged in boycotts or buycotts in 2017 [13]. In another survey, 30% of U.S.-based 
respondents reported stopping or changing their use of technology companies in particular [36], 
and some work has begun to design tools for technology-assisted political consumerism [35]. The 
results of the survey work, in particular, suggest that large-scale CDC is well within the realm of 
near-term feasibility: if CDC is made straightforward, it seems there are many people who will be 
interested. 

2.3 Learning Curves and Diminishing Returns from Data 

Research on the relationship between ML performance and dataset size provides important 
motivation for conscious data contribution. Many scholars have empirically studied “learning 
curves” – the relationships between training dataset size and ML performance – for a variety of 
models. When looking at a specific task (e.g., image classification), learning curves can be 
characterized as exhibiting diminishing returns. At some point, the relationship between 
performance and data size becomes “flat” [2,14]. Diminishing returns have been observed in a 
variety of contexts, for instance statistical machine translation [29], deep learning [5,22,49], 
logistic regression [44], decision trees [9], and matrix factorization recommender models [55]. 

The techniques used to study learning curves can be adapted to study data leverage. A typical 
procedure to generate a learning curve would entail randomly sampling a fraction of training data, 
retraining a model with this sample of data, and measuring performance of the new trained model. 
One might repeat this procedure for some fixed number of iterations to obtain the average 
performance for a random sample of a certain size. By doing this for a variety of fractions, we 
obtain a curve of performance vs. dataset size. To study data leverage, we are interested in the 
curve that relates performance to the fraction of users who contribute data (though in some cases 
we must use fraction of data as a proxy for fraction of users). At a high level, we obtain this curve 
using the same procedure for computing a learning curve that was used by Perlich et al. [44] and 
Cho et al. [5]. However, as we will describe below in Methods, there are some additional 
implementation details that distinguish data leverage simulations from learning curve experiments 
and help to increase the ecological validity of our simulations. 

2.4 Data Leverage and Online Collective Action  

The data leverage scenarios we simulated in this paper are instances of online collective action, a 
topic with a rich literature in social computing. This literature considers online collective action in 
a broad variety of contexts. These contexts include leadership as a collective activity in Wikipedia 
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[62], collective action for crowdworkers [51], the use of Twitter bots to organize civic volunteers 
[52], and the development of tools for “end-to-end” collective action [59]. It is likely that strategies 
that work well for these contexts may apply directly to data leverage scenarios, in particular by 
facilitating the organization and participation necessary to achieve large-scale participation.  

For instance, leaning on findings from CSCW scholarship about leadership in the Wikipedia 
community, CDC groups might encourage members who are not formal leaders to take leadership 
actions using strategies from Wikipedia [61,62]. More generally, CDC stands to benefit from most 
research on successful peer production (e.g. [17,26]), as peer production participants (especially 
Wikipedia editors) are already critical sources of data labor that fuels AI systems [37,56], and share 
core similarities with CDC participants. Concretely, groups engaging in CDC can emulate peer 
production strategies, and in some cases participating in peer production could be a form of CDC 
(e.g. contributing labeled images to Wikimedia Commons with the goal of helping start-ups train 
computer vision models). Another area of CSCW research that is highly relevant to CDC is 
crowdwork. Although there are major differences between crowdwork and peer production, 
crowdworkers also provide crucial data labor [27] and have led successful collective action 
movements in the past [51]. 

Similarly, looking to research on bots and support tools in social computing, CDC participants 
might re-use or adapt existing bots, social platforms, and browser plug-ins to promote CDC 
engagement [35,52,53,59]. Tools to support political consumption, such as browser extensions that 
help people boycott websites, might be enhanced with CDC features [35]. 

Social computing researchers have called for more work that addresses “Computer Supported 
Collective Action” (CSCA) [53]. Generally, any given data leverage scenario (i.e. CDC and/or a 
data strike by some group) can be seen as an instance of CSCA [53]. This means those seeking to 
use data leverage must face the many challenges associated with collective action, e.g. challenges 
with leadership, communication, and planning. Conversely, models of success in CSCA can 
provide templates for successful CDC.  
3 METHODS 

We conducted a series of experiments to compare the ML performance of two simulated 
companies when users exert data leverage using CDC and/or data strikes. For our simulations, we 
assume the following scenario. There exists a large, data-rich incumbent company – called “Large 
Co.” – that starts with a full dataset. Some users of Large Co.’s data-driven technologies are 
interested in protesting Large Co. because of its values or actions. To do so, they want to support a 
small, data-poor competing company – “Small Co.” – that better aligns with their values. We 
considered variations in this scenario in which users can contribute data to Small Co.’s dataset 
while simultaneously deleting it from Large Co.’s dataset (CDC with data strike) as well as 
variations in which deletion is impossible (CDC only). For additional context, we also considered 
variations in which users engage only in a data strike (data strike only). In all our simulations, data 
strikers delete all their data contributions and then models are retrained. 

To begin our experiments, we first had to identify specific ML tasks to study and a 
corresponding ML approach to implement for each task. We selected four tasks that have both 
attracted substantial research attention and have clear industry applications: two recommendation 
tasks (using movie ratings and Pinterest interaction records) and two classification tasks (images 
and text). For each task, we sought out a top-performing ML approach with a publicly available 
implementation. Below, we further detail our simulation assumptions and the specific tasks, 
datasets, and ML approaches from prior work that we used. 
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At a high level, our experiments follow procedures similar to those used in learning curve 
research that has studied the relationship between ML performance and training dataset size [22]. 
For each task, we repeatedly retrained the corresponding model with samples of the benchmark 
training set corresponding to different CDC and/or data strike participation rates (e.g. 1%, 5%, etc.), 
and evaluated model performance. 

Specifically, our data leverage simulations have three major differences from traditional 
learning curve simulations. First, in simulating data leverage scenarios, for datasets with user 
identifiers, we drew a sample of users to participate in CDC and/or a data strike instead of 
drawing a sample of data points. This approach simulates what would happen in a CDC scenario, 
in which data is added or removed on a user-by-user basis. For our classification datasets, which 
lack user identifiers, we randomly sampled data points, as in learning curve research. This is an 
inherent limitation, as many influential classification datasets lack user identifiers for privacy 
reasons. 

Second, when simulating CDC, we are primarily interested in ML performance as evaluated 
from the perspective of each company. To get this company perspective evaluation, we use a test 
set drawn from each company’s data sample. For instance, if Small Co. receives data from 10% of 
users, Small Co. must create its own test set using data from these 10% of users. However, as a 
secondary measurement, we can also hold out a separate, fixed test set that is hidden from each 
company. This fixed holdout perspective allows us to measure a performance while taking into 
account people who are accessing the technology as a brand new user (or anonymously, i.e. a user 
who receives recommendations in “Private Browsing” mode). This fixed holdout test set can also 
be seen as a more objective external measurement of model performance, as the fixed holdout set is 
the same across every simulation and is unaffected by which users or observations are available to 
a particular company. In a more practical sense, this company perspective vs. fixed holdout 
comparison is most relevant to personalization tasks, where performance might differ drastically 
for new (or anonymous) users.  

Third, as mentioned above, our data leverage simulations allow us to consider the case in 
which one company gains data while another company loses data, i.e., in a data strike. Below, we 
will discuss how we addressed the challenges in comparing these scenarios (i.e. how do we define 
a comparison metric that allows us to compare the effectiveness of giving Small Co. data vs. 
deleting data from Large Co.?) 

3.1 Simulation Details 

Following past learning curve studies, we considered a range of participation rates. Specifically, 
we conducted simulations in which a group of users engages in one of the following scenarios: 
CDC only, data strike only, or CDC with data strike. We considered participation rates of 0.01 (1% of 
users or data), 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5. We leveraged a natural symmetry of our experiments 
to estimate effects for larger groups: the situation in which Small Co. has some fraction s of all 
data is equivalent to the situation in which Large Co. has lost 1 - s of all data. For instance, if Small 
Co. gains 10% of all users or data, the expected ML performance is the same as when Large Co. has 
90% of its users or data deleted. Thus, without running additional experiments, we can also 
measure ML performance for participation rates of 0.6, 0.7, 0.8, 0.9, 0.95, 0.99. As we will discuss 
further below, we also consider baseline results (i.e. when Small Co. has very little data) and best-
case results (i.e. when Large Co. has all possible training data) in our definition of Data Leverage 
Power. 
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The end result of our simulations is to generate a curve showing the effectiveness of data 
leverage scenarios at different participation rates. While our simulated scenario focuses on just 
two companies, this curve could be used to evaluate data leverage exerted against many 
companies. If several companies simultaneously benefit from CDC, we can use each beneficiary 
company’s participation rate to get corresponding DLP. For instance, we might use this curve to 
compare the performance of one company that received CDC with 10% participation, another 
company that received CDC with 20% participation, and a third company that was the target of a 
data strike by 30% of its users. 

In each simulation, Small Co. and Large Co. gain access to a scenario-specific dataset, split their 
respective datasets into a train set and company-specific test datasets, train their models, and 
evaluate their trained models on two test sets: (1) their company perspective test set (which is 
unique to each scenario) and (2) a fixed holdout test set. As mentioned above, the fixed holdout test 
set provides an objective evaluation of performance (it does not depend on the company-specific 
test set) and is particularly relevant to personalization tasks. We further detail the purpose of 
considering these two different test sets below. 

For each training run, we use the same, fixed hyperparameters that achieved reported results in 
prior work instead of running hyperparameter search for each simulation. While this substantially 
reduces the computational cost of our experiments, this means that for any given scenario, our 
results do not necessarily represent the best possible performance for a given participation rate. 
For instance, if Small Co. only has 10% data to work with, it’s possible Small Co. could use 
different hyperparameters (or other techniques, such as data augmentation, different training 
algorithms, etc.). to boost performance. However, by using fixed hyperparameters, we reduce the 
computational cost and make it easier to explore several tasks, use multiple sampling seeds, and 
replicate our findings. 

More formally, our simulations followed the same procedure for each fractional group size s: 
 

1. Identify the data that will be given to Small Co. via CDC and removed from Large Co. via 
data strikes. To identify this data, we randomly sampled s (the participation rate) of all 
users and took the data attributed to the sampled users. For tasks in which units of data 
are not attributed to specific users (image and text classification), we sampled s of all units 
of data. 

2. Train and evaluate a model using Small Co.’s dataset. This gives us Small Co.’s 
performance in the CDC only scenario. 

3. Train and evaluate a model using Large Co.’s dataset. This gives us Large Co.’s 
performance in both the CDC with data strike and data strike only scenarios. 

4. Compare Small Co.’s performance and Large Co.’s performance to worst-case and best-
case performance values. As we will describe below, we formalized this comparison by 
defining “Data Leverage Power”, a measurement that we used (alongside traditional ML 
metrics) to compare data leverage across different ML tasks. At a high level, DLP measures 
how close CDC gets Small Co. to Large Co.’s performance, or how close a data strike 
moves Large Co.’s performance to low-data baseline performance. We expand on DLP’s 
precise definition and the motivation underlying the measurement below. 

 

In order to measure average performances for each participation rate, we repeated this 
procedure using five different seeds for sampling s users/data and calculated the average 
performance across these iterations. Thus, for each ML task we studied, we retrained a model 70 
times (7 group sizes, 5 sampling seeds, and 2 different companies), which was made easier by our 
choice to avoid costly hyperparameter searches.  
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3.2 Tasks, Datasets and Machine Learning Implementations 

As mentioned above, we first identified ML tasks of interest to ML researchers in industry and 
academia, and then sought out a publicly available implementation of a high-performing ML 
approach for each task. To make experimentation feasible, we also needed to identify 
implementations that would be possible to retrain many times. We identified four public 
implementations of successful approaches to well-studied, industry relevant ML tasks: Rendle et 
al.’s [47] implementation of recommender systems that use star ratings, Dacrema et al.’s [8] 
implementation of recommender systems that use binary interaction data, an image classifier from 
the Stanford DAWNBench competition [6], and a text classifier from Google Jigsaw’s Toxic 
Comment Classification challenge hosted on Kaggle [63]. 

Below, we provide additional detail about the four ML tasks and the specific datasets and 
models from prior work that we used. In each case, we followed prior work closely in our 
implementations so that the best-case performance achieved by Large Co. when it has access to a 
“full dataset” (i.e. 100% of the dataset used in prior work) is comparable to the published results. To 
make our simulations ecologically valid, our goal was for Large Co.’s best-case, full dataset 
performance to be comparable to reported results in prior work, while keeping computational 
costs down. To this end, we made some small changes aimed at reducing the cost of experiments 
while minimally impacting performance. We used software from prior work where possible and 
make the code for our experiments available.1 

The first two tasks we studied were recommendation tasks that involve training “recommender 
systems” to predict the rating a user will give an item and predicting whether a user will interact 
with an item. Recommender systems are enormously important to a variety of industries, have 
garnered huge attention in the computing literature, and are immensely profitable [18,39,60]. The 
second two tasks we considered were classification tasks: classifying images (with ten possible 
image classes) and classifying text as toxic or non-toxic. These tasks come from two large ML 
research areas (computer vision and natural language processing) and are representative of 
classification systems that are applicable to a huge variety of industries (i.e. identifying the class of 
an image or piece of text is broadly useful).  

For the rating prediction task, we used Rendle’s [46] factorization machine approach with the 
extremely influential MovieLens 10-M dataset [18], as Rendle et al. [47] demonstrated that this 
approach outperformed a variety of competing approaches in terms of Root Mean Squared Error 
(RMSE), a metric used in past recommender system competitions. Specifically, we used Bayesian 
Matrix Factorization with size 32 embeddings and 50 sampling steps, which substantially lowers 
training costs and slightly lowers performance compared to the most expensive configuration 
Rendle et al. used (size 500 embeddings and 500 sampling steps). 

Dacrema et al. rigorously compared simple, yet well-calibrated baseline techniques to complex 
neural techniques for the interaction prediction task. We focus on the Pinterest recommendation 
dataset from Dacrema et al.’s work, originally from Geng et al. [16]. Dacrema et al. showed that a 
simple item-based k-nearest neighbor performs extremely well—better than neural techniques—for 
this dataset. We use Dacrema et al.’s implementation of a k-nearest neighbor recommender 
system. In terms of evaluation, Dacrema et al. used Hit Rate@5 (alongside other metrics that led to 

                                                           

1 https://github.com/nickmvincent/cdc 
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similar findings). Hit Rate is defined by holding out a single item that each user interacted with 
and then using the model to rank the held-out item and 99 random items the user did not interact 
with. If the item that the user actually interacted with is in the top five ranked results returned by 
the model, this is considered a success, and Hit Rate@5 is the total fraction of users for which the 
model was successful. This evaluation procedure maps well to top-n recommendation features 
common on many platforms (e.g. “Top Videos for You”). 

For a classification task from computer vision, we consider the CIFAR-10 dataset, a popular 
benchmark dataset for image classification [31]. The Stanford DAWNBench challenge [6] includes 
a leaderboard that documents image classification approaches that achieve high accuracy using 
minimal training time. From this leaderboard, we used Page’s [42] ResNet approach and the well-
studied CIFAR-10 dataset [31] (which includes images belonging to ten different classes). For this 
task, we evaluated our models using accuracy: for this task, accuracy is defined as fraction of test 
images that are successfully classified. 

From natural language processing, we consider the case of toxic comment classification, using 
labeled Wikipedia discussion comments from Google Jigsaw’s ML challenge hosted on Kaggle 
[63]. We used a TF-IDF logistic regression approach from the Kaggle leaderboard that achieves 
performance comparable to top models. While the dataset has labels for six different overlapping 
categories of toxicity, we focused only on binary classification (toxic vs. non-toxic) such that we 
train only a single model for each simulation. We made this task binary by treating a comment 
with any toxicity-related label (toxic, severely toxic, obscene, threatening, insulting, hateful) as 
generally toxic. As in the Kaggle competition, we evaluate the model using area under the receiver 
operator curve (which we refer to as AUC, for area under the curve). The binary classification 
performance of the ML approach is very close to the average performance across the six categories 
(see code repo for more details2). 

Our datasets also cover a range of sizes and data types: the ML-10M dataset has 10M explicit 
ratings (1-5 stars) from 72k users. The Pinterest dataset has 1.5M interactions from 55k users. 
CIFAR-10 has 50k train images and a fixed set of 10k test images. The Toxic Comments dataset 
has 160k comments. This presents a major challenge in comparing the results of our data leverage 
simulations: each task is typically evaluated in a different manner (i.e. RMSE vs. Hit Rate vs. 
Accuracy vs. AUC), our datasets are of different sizes, and the format of data varies substantially 
(i.e. a movie rating is different than an image or piece of text). For instance, we might perform 
several experiments that show that a contribution of x star ratings can improve recommender 
RMSE by y, whereas a contribution of x images can improve image classification accuracy by z. 
However, comparing changes in RMSE to changes in image classification accuracy is not 
straightforward. Below, we describe how we defined Data Leverage Power in order to address this 
challenge. 

3.3 Measuring the Effectiveness of CDC with Data Leverage Power 

Different ML tasks require different evaluation techniques and our datasets have different sizes 
and different data formats. Here, we describe how we compared the effectiveness of CDC across 
different tasks. 

To measure effectiveness, we introduce a task-agnostic measurement: Data Leverage Power 
(DLP). The goal of defining DLP is to create a single metric that captures the effectiveness of data 
leverage across ML tasks and across different data leverage scenarios (e.g., strike vs. CDC). DLP is 
defined in a scenario-specific manner such that it tracks Small Co.’s ability to catch up with Large 
Co. in ML performance in CDC scenarios, but also tracks the ability for a data strike to lower 
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Large Co.’s performance in the data strike only scenario (in which Small Co.’s performance does 
not change).  

For each participation rate, DLP takes into account four measurements: baseline performance 
(performance with a very low data approach, for instance a “random guess” approach for 
classification or “recommend most popular items” approach for recommendation), the full-data 
best-case performance, Small Co.’s average performance, and Large Co.’s average performance. 
Below, we refer to these four measurements, respectively, as baseline, best, small, and large. While 
measuring full-data best-case performance is straightforward, selecting a baseline is less so. After 
walking through exactly how we defined DLP below, we describe how we identified baseline 
performance for each task. 

For our two scenarios that involve CDC (CDC only and CDC with data strike), DLP is defined as 
the ratio of Small Co.’s average performance improvement over baseline to Large Co.’s average 
performance improvement over baseline for a given participation rate. In other words, we 
compare how much better Small Co.’s performance improves on the baseline to how much Large 
Co.’s performance improves on the baseline. Mathematically, for our scenarios that involve CDC, 
DLP defined as is: 

𝑠𝑚𝑎𝑙𝑙 − 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑙𝑎𝑟𝑔𝑒 − 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
 

 
In CDC only scenarios, Large Co.’s performance never changes (no data strike occurs) and is 

therefore fixed at best-case performance, while Small Co.’s performance increases with 
participation rate. In the CDC with data strike scenarios, larger participation rates lower Large 
Co.’s performance while increasing Small Co.’s performance. 

As an example, imagine that for some model, best-case performance is 1.0 accuracy and worst-
case is 0.5. With full data, Large Co. achieves the best-case 1.0 accuracy and thus has an 
improvement over worst-case of 0.5. For CDC by 10% of users, Small Co.’s accuracy (averaged 
across iterations) is 0.7, an improvement over worst-case of 0.2. If this is accompanied by a data 
strike and this data strike causes Large Co.’s performance to drop to 0.9, Large Co. now has an 
improvement over worst-case of 0.4. In this case, the DLP for CDC only is 0.2 / 0.5 = 0.4 and the 
DLP for CDC with data strike is 0.2 / 0.4 = 0.5. By repeating the entire process for every group size, 
we obtain a full plot of DLP vs. participation rate. For each task, we set “baseline” performance as 
corresponding to the worst performance from all our experiments, which occurs when either 
company has as little data as possible (in our experiments, 1% of users/data). For ML-10M, this 
occurs when Small Co. has 1% of users and is evaluated on the fixed holdout test set. In this case, 
the model effectively guesses the mean rating for almost all predictions. For CIFAR-10, the worst-
case performance also occurs when Small Co. has 1% of the data, and is about 10%, equivalent to 
randomly guessing one of ten classes. For Toxic Comments, the lowest performance occurs when 
Small Co. has a 1% sample of data (and is about 0.9 AUC). The Pinterest task is a special case, as 
our approach cannot make predictions for unseen users. To get a baseline for Pinterest, we 
followed Dacrema et al. and used the performance achieved when using a simple “recommend 
most popular items” approach with full data. As we will discuss below, we also “recommend most 
popular” to calculate fixed holdout performance (because in a fixed holdout scenario, the 
recommender will face unseen users). 

In data strike only scenarios, however, Small Co.’s performance is fixed at worst-case 
performance and therefore Small Co.’s improvement over baseline is zero. This means the 
numerator of the ratio we used above is always zero in data strike only scenarios. Therefore, for 
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these scenarios, we calculate how much Large Co.’s performance has fallen from best-case 
performance and find the ratio of Large Co.’s performance loss to gap between best-case and 
baseline. This “no-CDC” version of DLP is still comparable to CDC version, as it measures the 
delta between Small Co. and Large Co.’s performance. Mathematically, DLP for data strike only 
scenarios is: 

𝑙𝑎𝑟𝑔𝑒 − 𝑏𝑒𝑠𝑡

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 − 𝑏𝑒𝑠𝑡
 

 
The DLP approach to comparing data leverage simulations accounts for the fact that datasets 

are of different sizes and are comprised of different, hard-to-compare data types (e.g. a single 
image is different from a single user-item interaction). By focusing on DLP and participation rate 
(instead of e.g., number of users, number of observations, number of gigabytes of data, etc.), we 
can make comparisons across ML tasks, e.g., how does CDC by 30% of ML-10M users compare to 
CDC by 30% of CIFAR-10 users? 

In interpreting our results, we calculate the participation rates needed to achieve a certain DLP 
for each ML task. For instance, we ask “How many users does it take to get 80% of the way to 
Large Co.’s performance?” We consider a variety of reasonable round-number DLP thresholds, 
because acceptable performance levels will vary by user and ML task (identifying acceptable 
performance levels is an important area of future work). For instance, a user who is motivated to 
support Small Co. (e.g. because they feel strongly about protesting Large Co.’s values or actions 
and feel strongly about supporting Small Co.’s values or actions) might accept much worse 
performance from Small Co.’s technologies than a user who does feel as strongly about the 
companies’ value or actions. For instance, even for a DLP of 0.5 – e.g. Small Co.’s recommender 
system gets just 50% of the way to best-case performance – a user who strongly supports Small 
Co. might not mind needing to scroll further through their recommendation lists. 

It is important to note that while DLP was critical to our ability to compare different data 
leverage scenarios, is important to consider task-specific factors such as performance thresholds 
and the real-world value of improved performance, i.e., if performance changes from x to y, what 
are downstream effects on revenue, user retention, etc.? To increase the interpretability of our 
piecewise definition of DLP and address the second challenge, we also report the raw performance 
values (traditional metrics) that accompany a given DLP value. In doing so, we retain the benefits 
of DLP (easy comparisons across tasks) while still allowing those familiar with a particular task to 
understand task-specific effects of a data leverage campaign (i.e., if a DLP campaign moves 
performance over or under an important task-specific performance threshold). As we will 
highlight again throughout our Discussion, a similar approach that treats DLP and traditional 
metrics as complementary will also be useful for studying data leverage in practice. 

Additionally, comparing a data strike to CDC is comparing an action that harms ML 
performance to an action that helps ML performance. In order to address this challenge, we 
defined DLP as piecewise, with a separate definition for CDC scenarios and data strike only 
scenarios, such that harming Large Co. and helping Small Co. both represent increased balance in 
power between Large Co. and Small Co. In other words, our piecewise definition is motivated by 
the assumption that CDC and data strikes represent two ways of achieving the same goal.  

3.4 Company Perspective vs. Fixed Holdout Evaluation 

As mentioned above, when simulating CDC, we evaluate our models using scenario-specific 
company perspective test sets (i.e. test sets drawn from the data that Small Co. or Large Co. have). 
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However, as a secondary measure, we can also look at evaluation metrics from a fixed holdout set 
that neither company can access, which summarizes ML performance while taking into account 
the experience of new users and anonymous users. In other words, we consider both a “subjective” 
test set and an “objective” test set (in the sense that the “objective” fixed holdout set is unaffected 
by the specifics of each data leverage scenario, while the “subjective” company perspective test set 
is affected). For ML-10M and Toxic Comments, we used the same approach used in Rendle et al.’s 
review and sampled a random 10% of data to create a fixed holdout set. For the Pinterest and 
CIFAR-10 datasets, we used the fixed holdout sets used in the prior work [8,31] that inspired our 
modeling approach. 

The distinction between fixed holdout and company perspective test sets is most important for 
personalization tasks (e.g., recommendation). For these contexts, if a company has no data about a 
particular user (e.g., because that person is a brand-new user, is accessing a service anonymously, 
or is engaging in obfuscation), that user necessarily receives non-personalized worst-case 
performance. For the ML-10M case, the approach we used can only, at best, predict that 
anonymous users will give every item the mean rating of all items. For the Pinterest case, the 
approach we used cannot produce recommendations for unseen users, so we uniformly assigned 
these users a Hit Rate@5 contribution of 0.1668, corresponding to Hit Rate@5 documented by 
Dacrema et al. when using a non-personalized “recommend most popular items to everyone” 
approach. 

The real-word scenario that fixed holdout evaluation maps to is the one in which users receive 
recommendations from both Small Co. and Large Co. but use one or both of the services as a new 
or anonymous user (or use obfuscation to make themselves effectively anonymous). For instance, 
if only 10% of users contribute data to Small Co., but every single user chooses to use Small Co.’s 
recommender system, it will necessarily perform poorly for the 90% of users for whom the model 
cannot provide personalized results. 

Critically, if a company has strong company perspective performance, but poor fixed holdout 
performance, this means their technologies will be very effective for current users, but they may 
have trouble expanding their userbase. Our experiments involve random sampling, so each 
simulated company perspective test set is drawn from the same distribution as the fixed holdout 
set, with the main difference arising when a user appears in the fixed holdout set but not a 
particular company’s test set. In practice, CDC and data strikes may be practiced by homogenous 
groups, and so the distinction between company perspective and fixed holdout may become even 
more important. In presenting our results, we focus first on company perspective evaluation, and 
then discuss the implications of looking at results using a fixed holdout set. Comparing different 
“test set perspectives” will be an important component of future data leverage research. 

 
4 RESULTS 

Below, we present the results from our DLP simulations. We begin by focusing on our CDC only 
results. Next, we examine the additional effect of adding a data strike to CDC and examine our 
results for CDC with data strike and data strike only scenarios. 

As mentioned above, our primary focus is on ML performance measured with company 
perspective evaluation. At the end of this section, we present our secondary measurement, fixed 
holdout evaluation, and describe how this secondary measurement informs us about interactions 
between data leverage and personalization systems. 
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Fig. 1. The left column shows DLP plotted against participation rate for CDC only, CDC with 

data strike, and data strike only scenarios. Each row shows a different ML task. The right 
column shows the task-specific performance measurement we used to calculate DLP. Vertical 

bars show standard deviation for task-specific results. 

4.1 CDC Only Scenarios using Company Perspective Evaluation 
Our full set of company-perspective experimental results are shown in Figure 1. The left column of 
Figure 1 shows Data Leverage Power (DLP), our measurement described above that allows us to 
compare results across ML tasks. A higher DLP value means that a data leverage action was more 
effective, in terms of boosting Small Co. and/or reducing Large Co.’s performance. Within the left 
column, CDC only results are shown in black. To show how DLP relates to task-specific 
performance, the right column shows the various task-specific evaluation measurements that we 
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used to calculate DLP for each scenario: Hit Rate, Root Mean Squared Error (RMSE), Accuracy, 
and Area under the Receiver-Operator Curve (AUC). Here, there are only two colors: black shows 
Small Co.’s performance improving as CDC participation increases while blue shows Large Co.’s 
performance decreasing as data strike participation increases (we discuss these data strike results 
below). As described above, using baseline performance, best-case performance, and these two 
performance curves, we can compute DLP values (left column) for all three of our scenarios. 

Examining the black curves in the left-hand column of Figure 1, it appears that CDC can be 
highly effective at allowing a small company to drastically reduce the performance gap between 
itself and a large competitor, as across our four tasks we see a CDC participation rate of at 
minimum 10% and at most 20% is needed to get Small Co.’s performance 80% of the way to best-
case (i.e., the black curve reaches a DLP of 0.8). In general, both the scenario-specific evaluation 
curves (right column) and resulting DLP curves (left column) display diminishing returns of data. 
However, comparing the rows in Figure 1, we see that the effectiveness of CDC at reducing the 
performance gap between companies is not identical across tasks. The curves “level off” at 
different rates. Like learning curves, DLP curves are influenced by a variety of factors such as the 
algorithm used and the size of the full dataset. DLP provides us with a consistent way to make 
comparisons.  

To systematically compare the black DLP curves from each row shown in the left column of 
Figure 1 is, we asked, “what group size of CDC is needed to achieve a given DLP”? Drawing from 
the results shown in Figure 1, Table 1 shows the CDC group size needed to achieve DLP 
thresholds of 0.5, 0.6, 0.7, 0.8, and 0.9. 

Table 1. Shows the CDC participation rate needed to reach DLP thresholds of 0.5, 0.6, 0.7, 0.8, and 
0.9 for each ML task we studied. For instance, the bottom left cell shows that 5% CDC participation 

is needed to reach a DLP of 0.5 for the Toxic Comments task. 

 DLP Thresholds 

0.5 0.6 0.7 0.8 0.9 

 
 
ML Task 

Pinterest  5% 5% 5% 10% 20% 

ML-10M 5% 10% 20% 20% 40% 

CIFAR-10 5% 5% 10% 20% 30% 

Toxic Comments 5% 5% 10% 20% 40% 

 
Looking at Table 1, we see that CDC was especially effective for the Pinterest recommendation 

task, e.g., for the Pinterest task, only 20% of users need to engage in CDC to achieve 90% of best-
case performance. For the other tasks, larger CDC participation (i.e. 30-40%) was required to 
achieve this same 90% DLP threshold. 

Even for the cases that require greater participation to achieve a given DLP threshold, the 
results in Table 1 suggest CDC could be quite impactful. For instance, in the ML-10M case, 20% of 
users can achieve a DLP of 0.8, which may be good enough for some potential users to begin using 
Small Co.’s ML model. Furthermore, the Small Co. performance results are not upper bounds on 
performance for a given participation rate; it is possible that Small Co.’s data scientists could get 
even better performance by using a model that performs better for small datasets, by adjusting 
hyperparameters, by using data augmentation, etc.  
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Looking at the traditional performance metrics in the right column, we see underlying values 
from which DLP was calculated. To obtain DLP of 0.8 with in CDC only scenarios, Small Co. must 
achieve substantial improvements over the baseline. For instance, at participation rate of 20%, 
Small Co. achieves a Pinterest Hit Rate of 0.66, MovieLens RMSE of 0.82, CIFAR-10 accuracy of 
0.84, and a Toxic Comments AUROC of 0.96. These are raw performance metrics that may very 
well be acceptable for Small Co.’s use. For instance, in their paper, Rendle et al. documented 
progress on ML-10M: an RMSE of 0.82 is equivalent to the state of the art in 2008, which may be 
adequate for CDC participants. Comparing the left and right columns of Figure 1, we see that 
converting DLP to raw performance is relatively straightforward for CDC only, because Large 
Co.’s performance never changes (as there is no data strike) and the DLP curve therefore has the 
same shape as the raw performance curve. 

 

4.2 CDC With Data Strike and Data Strike Only using Company Perspective Evaluation  

Next, we look at how DLP changes when users engage in CDC (to Small Co.) and simultaneously 
engage in a data strike (by deleting data from Large Co.). Returning to the left column of Figure 1, 
we focus on the blue squares (CDC with data strike) as well as the difference between the blue 
squares and black circles (CDC only). 

Our primary finding here is that a data strike can add a small effect on top of CDC, but only 
when participation rates rise above around 20%. Even for a participation rate of 30%, adding a data 
strike adds at most 0.05 DLP. This means that for a group of 30% of users, the ability to delete data 
lowers Large Co.’s performance and thus “closes the performance gap” by at most an additional 
5%. Of course, the logistical and potential legal challenge of adding the data strike on top of CDC 
may incur large costs relative to the gain. 

Returning to the raw performance metrics in the right column, we can see how the additional 
“boost” from incorporating data strikes corresponds to reduced performance for Large Co. 
Looking at Large Co.’s performance curve in blue, we unsurprisingly see the same characteristic 
diminishing return curves: small data strikes only have minor impact on Large Co., explaining the 
relatively small DLP boost from adding data strikes to CDC. 

Even at a participation rate of 0.5 (i.e. a group of 50% of all users included in the benchmark 
dataset), the benefits of adding a data strike are still modest, peaking at 9% for the Toxic 
Comments case. At the same 50% group size, deletion had only a 3% benefit for the Pinterest case. 
We cannot measure the benefits for groups larger than 0.5, because at this point Large Co. now 
has less data than Small Co. and we effectively begin traversing the DLP curve backwards (i.e., 
Small Co. has now become the “larger” company in terms of dataset size). 

Finally, looking at the data strike only DLP curves (red x’s in the left column), we see that data 
strikes alone have very little DLP relative to CDC approaches. This illustrates the challenge of 
diminishing returns of data. If a learning curve is flat (or almost flat) for a wide range of 
participation rates, a data strike alone must break out of this flat region to begin exerting 
substantial data leverage. As we will see immediately below, an interesting exception to this trend 
is when we consider anonymous users: users who engage in a data strike against Large Co. but 
continue to use Large Co.’s technology will receive non-personalized results, which can hurt Large 
Co.’s overall performance substantially. 

To summarize, we see that data strikes have much less potential to exert data leverage than 
CDC at participation rates less than 50%. Of course, CDC requires the existence of a competitor, so 
in many cases people may only be able to data strike. Specifically, in monopoly contexts, data 
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strikes may be the only option available to users. We expand on how supporting CDC might 
support greater competition, as both a tool against monopoly but also in the service of innovation. 

4.3 CDC Effectiveness using Fixed Holdout Evaluation 

As discussed above, it is informative to examine the effects of CDC when ML models are evaluated 
using a fixed holdout test set that includes users who may not appear in the company perspective 
test set. Figure 2 shows the same measurements as Figure 1 but uses fixed holdout performance 
instead of company perspective performance. 

We observed that for non-personalized CIFAR-10 and Toxic Comment cases, fixed holdout test 
set evaluation gave very similar results to company perspective evaluation. This is expected: the 
company perspective test sets were randomly drawn from the same source as the fixed holdout test 
sets in our experiments. The only notable difference was higher standard deviation (vertical bars 
visible in the last row of Figure 1) in performance for small amounts of data, because the company 
perspective test sets are smaller for smaller group sizes. 

For ML-10M and Pinterest recommendation tasks (i.e. tasks that involve personalized results), 
fixed holdout test set performance is different from company perspective performance. Rather than 
a diminishing returns curve, ML performance (and the resulting DLP) is linearly dependent on 
participation rate. Specifically, as each company loses users, their recommendation performance 
linearly approaches non-personalized baseline performance. 

As described above, this result corresponds to a situation in which some users access a 
recommender system with a new account (i.e. because they are new users, or perhaps because 
they deleted their account as part of a data leverage campaign), forcing the system to output non-
personalized results. Specifically, imagine that 30% of users engage in CDC to support Small Co. 
Some other group of users access Small Co.’s recommender system with new accounts. These 
users who did not participate in CDC but continue to use Small Co.’s model anonymously will not 
see the benefits of other people’s data contributions until they provide their own data. This result 
highlights that personalized ML systems require users to provide their own data before they can 
see the benefits of CDC. 

The evaluation of recommender systems using a fixed holdout set shown in Figure 2 also 
highlights a case in which deletion can play a large role in reducing the performance gap between 
two personalization technologies. Put plainly, if a user insists on getting non-personalized results 
from one company, deleting their data from a competing company is effective at reducing the 
performance gap between the two: both companies will be forced to provide the user non-
personalized results. 

Overall, these results suggest that while the ability to delete data can enhance the ability of 
CDC by groups to increase competition between ML technologies, it will only make a large 
difference for relatively large campaigns or for cases in which people use personalized ML 
technologies with new accounts. Deletion raises ethical concerns as well: there are cases in which 
hurting some “Large Co.” may be seen as anti-social, e.g. for classification models that are well 
known to assist physicians in achieving better health outcomes, but there are also cases where 
hurting Large Co. companies may be seen as pro-social, e.g. lowering the utility of disadvantage-
reinforcing credit scoring systems. We expand on these concerns below. 

 
5 DISCUSSION 

In this section, we discuss the implications of our experimental results and the limitations of our 
study that might be addressed by future work.  
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As we highlighted in the Introduction, the study of power dynamics between users and tech 
companies using the combined lens of collective action and machine learning is relatively new. 
We were able to contribute to this emerging research area by leveraging simulation methods, with 
assumptions grounded in ongoing discussions about data leverage and ML. We have seen that 
CDC represents a promising and feasible means by which the public might gain additional 
leverage. 

The potential impact of CDC could be amplified through a number of avenues that span design, 
policy, and research. In order to make CDC more broadly available, there are major opportunities 
to design new technologies to make CDC easier, as well as opportunities to institute policy that 
supports CDC. We discuss specific examples below. 

 

5.1 Implications for Design and Policy 

We observed that CDC can be effective in reducing the performance gap between two 
competitors. This finding suggests that constituencies interested in creating more competition 
between AI services—as an intervention aimed to prevent monopolies or as a means to increase 
innovation—may wish to further investigate CDC itself (e.g. conducting similar experiments to 
those described here) and explore avenues for making CDC easier at the grassroots level. 
Policymakers and advocates might push for data portability regulations, an area of growing 
discussion [10,50]. Specifically, policies that make it easier for people to obtain data they generate 
and transfer that data to another company could make CDC easier. For instance, the EU’s GDPR 
has a “right to data portability” – other jurisdictions might emulate or extend this idea [64].  

Regulatory support will be particularly important for making CDC possible for datasets with 
complex formats. For instance, for datasets that are captured with proprietary sensors (e.g., 
wearable tech personal health datasets), CDC will likely remain impossible without regulation that 
compels companies to make data transferrable in common (and machine-readable) format. The 
creation of such regulation will benefit from interdisciplinary research incorporating machine 
learning, law, and HCI/CSCW.  

In the near-term, the technologies and companies to which CDC is applicable may be limited 
by the legal rights around data. In other words, while tools (e.g., scraping software from 
researchers) and voluntary choices by companies (e.g., Google’s Takeout service) may make CDC 
possible today, there are certain contexts in which CDC needs legal support. In general, laws that 
give users more agency over the data they helped to generate will amplify the power of data 
leverage, whereas laws that make it harder to have agency over data will do the opposite. Data 
leverage will especially benefit from laws that are designed with a focus on the social and 
collective nature of data creation, as opposed to a framework of individual data ownership. 
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Fig. 2. DLP results using Fixed Holdout Evaluation. Like Fig. 1, the left column shows DLP plotted 
against participation, each row shows a different ML task, and the right column shows the task-

specific performance measurement we used to calculate DLP. 
 
Software can complement regulation or support CDC in the absence of regulation. Designers 

might create tools that make CDC easier, such as tools that help users collect their data from web 
platforms in a format that is easy to share with other companies or organizations. These tools 
might look similar to software used to collect data for studies in social computing and CSCW (e.g. 
software like data scrapers and scripts that use APIs to obtain data from sources like Twitter, 
Wikipedia, Reddit, etc. [41]). There are also opportunities for technology designers to create tools 
that help organize and make visible the impact of CDC. These tools could take inspiration from 
technologies that support collective action (e.g. Zhang et al.’s “WeDo” [59] and Li et al.’s “Out of 
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Site” [35]), and would aid in scaffolding the CDC process and communicating the impact of CDC 
to participants. Indeed, this direction would benefit especially from CSCW research around 
coordinating and motivating online groups (including work that has focused on peer production, 
e.g. [26,30,61,62]). An additional synergy between the CDC concept and CSCW research is that 
CDC is, by its nature, online. Any techniques, tools, and strategies developed by CSCW 
researchers for online collective action (activism, peer production, etc.) might additionally be used 
to support groups who wish to engage in CDC. In the same vein, new findings from CSCW that 
support collective action can likely be applied to CDC in a straightforward manner.  

5.2 Ecological validity of simulations 

The conceptualization of CDC we simulated is something that users can realistically engage in 
today, although data strikes may not be feasible in some contexts (e.g. if regulators do not enforce 
user requests for data deletion). Thus, our results that correspond to scenarios in which CDC 
participants also delete their data can be seen as measuring how much more effective CDC might 
be in a world in which large-scale data deletion is possible (and companies are forced to retrain their 
models regularly, protecting against “data laundering” through model parameters). In a very 
recent case, the Federal Trade Commission forced a privacy-violating company to delete both 
facial recognition data and the model trained using that data; this is a promising precedent for 
future data strikes [38]. 

An additional ecological validity concern is that expensive-to-train models, e.g. models that 
cost up to $245k to train [43], may be completely inaccessible to non-incumbent companies. Our 
experiments required repeated retraining of models, forcing us to select models that are fast to 
train. However, small challenger companies may also face financial constraints around model 
training, so by focusing first on fast-to-train models, we naturally select for approaches that small 
companies might realistically use. Furthermore, the datasets we investigated may be of similar size 
to some, but not all, models in production at tech companies. Future work that seeks to make 
expensive state-of-the-art model training cheaper could further widen the pool of models that are 
“CDC viable”. 

It is worth noting that some truly enormous models, such as OpenAI’s recent GPT-3 language 
model, may be simply too expensive to ever study with the simulation approach we used here [3]. 
For these models, it may be possible to investigate the efficacy of CDC and data strikes through 
alternative approaches, such as “influence” estimation techniques from the machine learning 
literature [28,58]. 

Finally, an important ecological validity concern is that there may be cases in which a “Small 
Co.” and “Large Co.” in the real world compete without offering comparable ML services, because 
the absence or presence of an ML service is a selling point (e.g. a privacy-focused Small Co. that 
eschews recommendation entirely). For such cases, the methodological approach of CDC 
simulation will not be as helpful as an analysis that focuses on other factors that govern business 
success. 

5.3 Identifying “Acceptable” Performance of ML Models 

One approach we used to compare ML tasks was to look at the CDC participation rate needed to 
reach reasonable round-number performance thresholds. In practice, there may be thresholds 
specific to certain contexts that require looking at traditional ML evaluation metrics, e.g., perhaps 
for certain users of a music recommender system, there is a certain Hit Rate at which they will 
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stop using the recommender. By considering traditional metrics, it is possible to take such 
thresholds into account. 

Public research that identifies these thresholds, and more generally the relationship between 
ML performance and downstream consequences (e.g., how performance impacts users leaving a 
platform, how performance maps to profit), will make it easier to plan CDC (following, for 
instance, Song et al.’s work on degraded search performance [54]). If CDC organizers know that 
DLP of 0.8 (or, returning to our results from ML-10M, an RMSE of 0.82) is “good enough” for most 
people, they can use simulations like ours to estimate what participation rate they need to achieve 
this DLP. 

Studying the relationship between performance and downstream consequences will likely 
require proprietary data (especially in the case of performance’s relationship with revenue). 
Furthermore, these relationships likely differ across ML tasks. Nonetheless, any findings in this 
area could be invaluable for informing CDC. 

Work on recommender systems has already shown that offline evaluation metrics do not fully 
predict user perception of recommendations [39]: while offline evaluation metrics like Hit Rate are 
defined to correlate directly with revenue generation (i.e. each hit corresponds to revenue), they 
do not necessarily correlate very well with user satisfaction. For the purposes of getting new users 
to join a competing platform, this means getting only part of the way towards “best-case” 
performance may be more than adequate to give users a satisfying experience. 

5.4 Negative Impacts of Data Leverage 

For ML technologies that are clearly identifiable as societally beneficial, exerting data leverage via 
data strikes could be harmful. Conversely, for technologies that are societally harmful, exerting 
data leverage via CDC could be harmful. Of course, the classification of beneficial vs. harmful 
technologies requires ongoing discussion, but research has already begun to identify some cases. 
Notably, Kulynych, Overdorf and colleagues’ work on Protective Optimization Technologies 
provides an overview of various harmful ML instantiations, including discriminatory facial 
recognition and credit scoring that create unjust economic feedback loops [32]. 

 Our results suggest that CDC should be preferred over data strikes for exerting data leverage 
against ML operators of societally beneficial technologies. Some ML models directly impact health 
and safety outcomes, e.g., ML models that assist doctors or operate vehicles. For such cases, using 
data deletion to reduce the performance of a large incumbent organization (e.g., a major hospital 
or transit company) could induce substantial societal harms (e.g., missed diagnoses or vehicle 
crashes).  

For cases in which a ML model is considered societally harmful, e.g. discriminatory facial 
recognition or unjust credit scoring [32], CDC does not represent a viable option. However, data 
strikes still face an uphill battle to break out of the flat region of diminishing returns curves. Our 
results suggest protest against such harmful ML models may be best accomplished through 
working towards regulation, perhaps in conjunction with data strikes or other types of POTs. 
Some jurisdictions, like San Francisco, have already moved towards such regulation, by banning 
the use of facial recognition by police [7]. Other jurisdictions might follow this example and 
directly regulate societally harmful technologies for which consumer leverage and data leverage 
are not well suited to address. 

An additional consideration is that a small CDC beneficiary operating a less-than-ideal version 
of a particular technology could also induce harms. To address this possibility, a set of acceptable 
performance thresholds could be determined by an external body knowledgeable about task-
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specific metrics (e.g., a government mandated minimum precision and recall for a medical model). 
CDC users seeking to a support a new health start-up would likely need to contribute enough data 
for the start-up to meet external standards before their models could be put into use. 

A final consideration is that evidence from economics literature suggests that broader data 
sharing may be more desirable from a consumer welfare perspective, as more companies would be 
able to provide high quality technologies [25]. In the extreme, if a huge number of firms are 
subject to data strikes, AI technologies would broadly suffer. In the opposing extreme, if a huge 
number of firms had access to data from every person in the world, AI technologies would be very 
accurate, but privacy would be grossly violated at a global scale. 

5.5 Data Sharing by Corporations 

We have so far framed our research by considering scenarios in which users collectively engage in 
CDC as a way of exerting data leverage against companies. However, firms can also share data 
that is broadly useful to other organizations. For instance, a company interested in social 
responsibility might release a labeled dataset that is useful for societally beneficial ML 
technologies as part of a conscious corporate social responsibility program. We’d expect such 
“corporate CDC” to have similar effectiveness to the CDC we studied here: if a large company 
releases 10% of its “toxic comment detection” data, this may be enough data for other 
organizations to get 70% of the way towards best case performance on this task. Indeed, we see 
some steps in this direction through open data initiatives [65]. Looking forward, government 
programs could even financially incentivize such open data initiatives as part of an effort to 
address concerns about the market power of tech companies. 

5.6 Limitations and Future Work 

In general, while our simulations covered a variety of tasks and we took steps to maximize the 
ecological validity of our simulations, there are many opportunities to extend our data leverage 
simulations. We used only one high-performing model and hyperparameter setup for each 
simulation. This means our results do not represent an upper bound for the effectiveness of CDC, 
as Small Co.’s data scientists would likely seek alternate models or hyperparameters that perform 
better for small datasets. Furthermore, there are numerous ML tasks that could be studied using 
simulation, perhaps with the ultimate goal of creating a “catalog” of CDC effectiveness. Such a 
catalog would be useful to CDC organizers, but also to policymakers interested in incentivizing 
corporate CDC and promoting competition around ML. 

It is worth nothing that while our DLP definition is critical for allowing us to compare ML tasks 
with different evaluation procedures and different data sizes, a weakness of the DLP definition is 
that it requires careful selection of a baseline and careful consideration of what constitutes a “full 
dataset”. Selecting an extremely weak baseline could make DLP appear exaggerated. Selecting too 
small or too large of a “full dataset” size could miss important parts of the DLP curve. We 
addressed these challenges by carefully choosing comparable baselines for each task (such that the 
baseline corresponds to a “low-data” or “no-data” approach that Small Co. might use when it has 
access to very little data) and by taking our datasets from prior work. 

One way future simulations can zoom in on specific tasks would be to perform simulations that 
take into account the costs and rewards of successes and errors. Researchers might estimate the 
cost of false positives and false negatives, estimate the reward associated with successful 
classification, and calculate the expected total cost or reward for each organization associated with 
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a given data leverage action (e.g. the cost to Large Co. and the benefit to Small Co.). This would 
move towards simulating the downstream consequences of CDC and data strikes. 

Another direction for future data leverage research involves more directly modeling factors 
other than data leverage participation rate that facilitate success for businesses and technologies. 
In this paper, we did not address the intricacies of markets, consumer preferences, the ecosystems 
in which tech companies operate, or the collective action processes required to organize data 
leverage campaigns. Each of these factors will be important for future work that advances 
understanding of data leverage. 

Beyond simulation, other directions for advancing this research area might involve in-the-wild 
experiments and observational studies of users exerting data leverage. This research might be 
conducted, at least in part, by organizations directly affected by data leverage, e.g. companies who 
are the targets of protest or the beneficiaries of CDC. These organizations will likely have access 
to unique data on the effectiveness of data leverage. In particular, as mentioned above, data that 
maps the effects of user-generated data to downstream consequences like business outcomes will 
be particularly valuable. 

Finally, our experiments looked only at one ML task at a time. Future work should consider the 
interplay between datasets and ML tasks. For instance, how does CDC interact with ML pipelines 
and datasets that feed into multiple ML systems? Answering this question will be important for 
understanding the full effects of CDC and data leverage. 

 
6 CONCLUSION 

In this work, we proposed and evaluated conscious data contribution, a tactic the public might 
use to exert data leverage against tech companies to encourage them to change their behavior 
around key issues of interest. CDC entails users making data contributions aimed at reducing the 
performance gap between a large incumbent ML operator that users wish to protest and a small 
competitor that users wish to support. Using simulations, we measured the effectiveness of CDC 
in a variety of ML contexts using both a new metric called “data leverage power” and traditional 
ML metrics. Our results suggest that CDC represents a viable way to reduce the ML performance 
gap between a large incumbent and small competitor. We also observe that data deletion can 
enhance the effects of CDC, but the overall impact of data deletion is small compared to CDC. 
Overall, these results provide early information that inform the growing data leverage   and 
provide guidance for constituencies interested in CDC. 
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